求满足a≤x≤b, c≤y≤d, 且gcd(x,y)=k的(x,y)的数目. n个询问. (1≤n,k,c,d≤50000, a≤b, c≤d) 可以这样考虑. gcd(x,y)=k的(x,y)的数目
莫比乌斯函数表可以借助于线性筛来打. 但现在算一次还是很慢......
看到整除, 联想到分段性, 所以单次查询可优化到根号级别.
由于事先知道这是莫比乌斯反演, 所以我是直接从定义开始推的, 把
const int N = 5e4, inf = 1e8;
typedef long long ll;
int mu[N + 1], S[N + 1];
void sieve()
{
static int prime[N/2];
static bool f[N + 1];
int cnt = 0;
mu[1] = 1;
For (i, 2, N) {
if (!f[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for (int j = 0, t; j < cnt && (t = prime[j]*i) <= N; ++j) {
f[t] = true;
if (i % prime[j]) mu[t] = -mu[i];
else break;
}
}
For (i, 1, N) S[i] = S[i-1] + mu[i];
}
ll cal(int a, int b, int c, int d)
{
ll ans = 0;
--a, --c;
for (int i = 1, ed = min(b, d), j; i <= ed; i = j+1) {
int _a = a/i, _b = b/i, _c = c/i, _d = d/i;
j = min(ed, min(b/_b, d/_d));
if (_a) j = min(j, a/_a);
if (_c) j = min(j, c/_c);
ans += (ll)(S[j] - S[i-1]) * (_b - _a) * (_d - _c);
}
return ans;
}
int main()
{
sieve();
int n;
scanf("%d", &n);
while (n--) {
int a, b, c, d, k;
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
printf("%lld\n", cal((a+k-1)/k, b/k, (c+k-1)/k, d/k));
}
return 0;
}